discuss@lists.openscad.org

OpenSCAD general discussion Mailing-list

View all threads

Recommendations needed for printing support structures

MF
mike.fraser.1945+osc@gmail.com
Sun, Nov 3, 2024 12:07 PM

The part below is a portion of a larger project being crafted in PLA on a FDM system.  As such it will not print.  It gets to about where the RED dot is then the webs start breaking or shifting.  I'm looking  for recommendations for a support structure that will not require extensive cleanup.
Thanks again, Mike





// Testing....
include <BOSL2/std.scad>

my_dia=50 ;
my_thick=3 ;
n_slots = 16 ;
my_slot=my_dia*PI/(n_slots*2);

// This will not print successfully, so, top_half then print two. Leave brim on, glue then separate brim
top_half() {
  difference() {
    difference() {
      // Body
      difference() {
        sphere(d=my_dia, $fn=180) ;
        sphere(d=my_dia-(2*my_thick)) ;
      }
      // slots
      zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1], center=true) {
        polygon ([
          [0,0],
          [1,-1],
          [my_dia/2,0],
          [my_dia/2, my_slot*1.5],
          [1,1]        
        ]) ;
      }
    }
    cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ;
  }
}

ReplyForwardAdd reaction

The part below is a portion of a larger project being crafted in PLA on a FDM system.  As such it will not print.  It gets to about where the RED dot is then the webs start breaking or shifting.  I'm looking  for recommendations for a support structure that will not require extensive cleanup.\ Thanks again, Mike ![]()\ \ \ \ // Testing....\ include <BOSL2/std.scad>\ \ my_dia=50 ;\ my_thick=3 ;\ n_slots = 16 ;\ my_slot=my_dia\*PI/(n_slots\*2);\ \ // This will not print successfully, so, top_half then print two. Leave brim on, glue then separate brim\ top_half() {\   difference() {\     difference() {\       // Body\       difference() {\         sphere(d=my_dia, $fn=180) ;\         sphere(d=my_dia-(2\*my_thick)) ;\       }\       // slots\       zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=\[0,0,1\], center=true) {\         polygon (\[\           \[0,0\],\           \[1,-1\],\           \[my_dia/2,0\],\           \[my_dia/2, my_slot\*1.5\],\           \[1,1\]        \         \]) ;\       }\     }\     cylinder(h=my_dia+1, r=my_thick\*2, center=true, $fn=90) ;\   }\ } ![](https://lh3.googleusercontent.com/a/ACg8ocKbAvUFM__9VH-7TeqCCDIC6PfKSceHibtzE8kljYbVGptMLA=s40-p-mo)**ReplyForward**Add reaction
P
pca006132
Sun, Nov 3, 2024 12:22 PM

Flip it?

On Sun, Nov 3, 2024, 8:08 PM mike.fraser.1945+osc--- via Discuss <
discuss@lists.openscad.org> wrote:

The part below is a portion of a larger project being crafted in PLA on a
FDM system.  As such it will not print.  It gets to about where the RED dot
is then the webs start breaking or shifting.  I'm looking  for
recommendations for a support structure that will not require extensive
cleanup.
Thanks again, Mike

// Testing....
include <BOSL2/std.scad>

my_dia=50 ;
my_thick=3 ;
n_slots = 16 ;
my_slot=my_diaPI/(n_slots2);

// This will not print successfully, so, top_half then print two. Leave
brim on, glue then separate brim
top_half() {
difference() {
difference() {
// Body
difference() {
sphere(d=my_dia, $fn=180) ;
sphere(d=my_dia-(2my_thick)) ;
}
// slots
zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1],
center=true) {
polygon ([
[0,0],
[1,-1],
[my_dia/2,0],
[my_dia/2, my_slot
1.5],
[1,1]
]) ;
}
}
cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ;
}
}

ReplyForwardAdd reaction


OpenSCAD mailing list
To unsubscribe send an email to discuss-leave@lists.openscad.org

Flip it? On Sun, Nov 3, 2024, 8:08 PM mike.fraser.1945+osc--- via Discuss < discuss@lists.openscad.org> wrote: > The part below is a portion of a larger project being crafted in PLA on a > FDM system. As such it will not print. It gets to about where the RED dot > is then the webs start breaking or shifting. I'm looking for > recommendations for a support structure that will not require extensive > cleanup. > Thanks again, Mike > > > > > > // Testing.... > include <BOSL2/std.scad> > > my_dia=50 ; > my_thick=3 ; > n_slots = 16 ; > my_slot=my_dia*PI/(n_slots*2); > > // This will not print successfully, so, top_half then print two. Leave > brim on, glue then separate brim > top_half() { > difference() { > difference() { > // Body > difference() { > sphere(d=my_dia, $fn=180) ; > sphere(d=my_dia-(2*my_thick)) ; > } > // slots > zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1], > center=true) { > polygon ([ > [0,0], > [1,-1], > [my_dia/2,0], > [my_dia/2, my_slot*1.5], > [1,1] > ]) ; > } > } > cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ; > } > } > > *ReplyForward*Add reaction > _______________________________________________ > OpenSCAD mailing list > To unsubscribe send an email to discuss-leave@lists.openscad.org >
JB
Jon Bondy
Sun, Nov 3, 2024 12:23 PM

I do not see a red dot, but in situations like this, I often create my
own support.  I would recommend something like this at the end of your code:

// support
intersection() {
    for (a = [0:360/n_slots:359])
        rotate([0, 0, a - 360/(4*n_slots)])
            translate([0, -0.25, 0])
                cube([35, 0.5, 35]);
        sphere(d=my_dia, $fn=180) ;
    }

Jon

On 11/3/2024 7:07 AM, mike.fraser.1945+osc--- via Discuss wrote:

The part below is a portion of a larger project being crafted in PLA
on a FDM system.  As such it will not print.  It gets to about where
the RED dot is then the webs start breaking or shifting.  I'm looking 
for recommendations for a support structure that will not require
extensive cleanup.
Thanks again, Mike

// Testing....
include <BOSL2/std.scad>

my_dia=50 ;
my_thick=3 ;
n_slots = 16 ;
my_slot=my_diaPI/(n_slots2);

// This will not print successfully, so, top_half then print two.
Leave brim on, glue then separate brim
top_half() {
  difference() {
    difference() {
      // Body
      difference() {
        sphere(d=my_dia, $fn=180) ;
        sphere(d=my_dia-(2my_thick)) ;
      }
      // slots
      zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1],
center=true) {
        polygon ([
          [0,0],
          [1,-1],
          [my_dia/2,0],
          [my_dia/2, my_slot
1.5],
          [1,1]
        ]) ;
      }
    }
    cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ;
  }
}

ReplyForwardAdd reaction


OpenSCAD mailing list
To unsubscribe send an email todiscuss-leave@lists.openscad.org

--
This email has been checked for viruses by AVG antivirus software.
www.avg.com

I do not see a red dot, but in situations like this, I often create my own support.  I would recommend something like this at the end of your code: // support intersection() {     for (a = [0:360/n_slots:359])         rotate([0, 0, a - 360/(4*n_slots)])             translate([0, -0.25, 0])                 cube([35, 0.5, 35]);         sphere(d=my_dia, $fn=180) ;     } Jon On 11/3/2024 7:07 AM, mike.fraser.1945+osc--- via Discuss wrote: > > The part below is a portion of a larger project being crafted in PLA > on a FDM system.  As such it will not print.  It gets to about where > the RED dot is then the webs start breaking or shifting.  I'm looking  > for recommendations for a support structure that will not require > extensive cleanup. > Thanks again, Mike > > > > > > // Testing.... > include <BOSL2/std.scad> > > my_dia=50 ; > my_thick=3 ; > n_slots = 16 ; > my_slot=my_dia*PI/(n_slots*2); > > // This will not print successfully, so, top_half then print two. > Leave brim on, glue then separate brim > top_half() { >   difference() { >     difference() { >       // Body >       difference() { >         sphere(d=my_dia, $fn=180) ; >         sphere(d=my_dia-(2*my_thick)) ; >       } >       // slots >       zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1], > center=true) { >         polygon ([ >           [0,0], >           [1,-1], >           [my_dia/2,0], >           [my_dia/2, my_slot*1.5], >           [1,1] >         ]) ; >       } >     } >     cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ; >   } > } > > *ReplyForward*Add reaction > > > _______________________________________________ > OpenSCAD mailing list > To unsubscribe send an email todiscuss-leave@lists.openscad.org -- This email has been checked for viruses by AVG antivirus software. www.avg.com
LM
Leonard Martin Struttmann
Sun, Nov 3, 2024 12:24 PM

I agree, flip it upside-down and use a raft.

On Sun, Nov 3, 2024, 06:08 mike.fraser.1945+osc--- via Discuss <
discuss@lists.openscad.org> wrote:

The part below is a portion of a larger project being crafted in PLA on a
FDM system.  As such it will not print.  It gets to about where the RED dot
is then the webs start breaking or shifting.  I'm looking  for
recommendations for a support structure that will not require extensive
cleanup.
Thanks again, Mike

// Testing....
include <BOSL2/std.scad>

my_dia=50 ;
my_thick=3 ;
n_slots = 16 ;
my_slot=my_diaPI/(n_slots2);

// This will not print successfully, so, top_half then print two. Leave
brim on, glue then separate brim
top_half() {
difference() {
difference() {
// Body
difference() {
sphere(d=my_dia, $fn=180) ;
sphere(d=my_dia-(2my_thick)) ;
}
// slots
zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1],
center=true) {
polygon ([
[0,0],
[1,-1],
[my_dia/2,0],
[my_dia/2, my_slot
1.5],
[1,1]
]) ;
}
}
cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ;
}
}

ReplyForwardAdd reaction


OpenSCAD mailing list
To unsubscribe send an email to discuss-leave@lists.openscad.org

I agree, flip it upside-down and use a raft. On Sun, Nov 3, 2024, 06:08 mike.fraser.1945+osc--- via Discuss < discuss@lists.openscad.org> wrote: > The part below is a portion of a larger project being crafted in PLA on a > FDM system. As such it will not print. It gets to about where the RED dot > is then the webs start breaking or shifting. I'm looking for > recommendations for a support structure that will not require extensive > cleanup. > Thanks again, Mike > > > > > > // Testing.... > include <BOSL2/std.scad> > > my_dia=50 ; > my_thick=3 ; > n_slots = 16 ; > my_slot=my_dia*PI/(n_slots*2); > > // This will not print successfully, so, top_half then print two. Leave > brim on, glue then separate brim > top_half() { > difference() { > difference() { > // Body > difference() { > sphere(d=my_dia, $fn=180) ; > sphere(d=my_dia-(2*my_thick)) ; > } > // slots > zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1], > center=true) { > polygon ([ > [0,0], > [1,-1], > [my_dia/2,0], > [my_dia/2, my_slot*1.5], > [1,1] > ]) ; > } > } > cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ; > } > } > > *ReplyForward*Add reaction > _______________________________________________ > OpenSCAD mailing list > To unsubscribe send an email to discuss-leave@lists.openscad.org >
AM
Adrian Mariano
Sun, Nov 3, 2024 1:12 PM

I agree that printing it upside down seems promising, but as designed, it
doesn't have much flat surface on the top to contact the build plate, so it
might still come loose.  But if you can make that method work, it would be
the best.  You might be able to make a loosely connected disk in the top
hole to provide more build-plate contact and then cut that out.  For
printing as shown, I don't think removing the necessary supports if you
only place them in the middle region would be a major operation, but the
surface left would be rough as is generally the case with supports.

On Sun, Nov 3, 2024 at 7:25 AM Leonard Martin Struttmann via Discuss <
discuss@lists.openscad.org> wrote:

I agree, flip it upside-down and use a raft.

On Sun, Nov 3, 2024, 06:08 mike.fraser.1945+osc--- via Discuss <
discuss@lists.openscad.org> wrote:

The part below is a portion of a larger project being crafted in PLA on a
FDM system.  As such it will not print.  It gets to about where the RED dot
is then the webs start breaking or shifting.  I'm looking  for
recommendations for a support structure that will not require extensive
cleanup.
Thanks again, Mike

// Testing....
include <BOSL2/std.scad>

my_dia=50 ;
my_thick=3 ;
n_slots = 16 ;
my_slot=my_diaPI/(n_slots2);

// This will not print successfully, so, top_half then print two. Leave
brim on, glue then separate brim
top_half() {
difference() {
difference() {
// Body
difference() {
sphere(d=my_dia, $fn=180) ;
sphere(d=my_dia-(2my_thick)) ;
}
// slots
zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1],
center=true) {
polygon ([
[0,0],
[1,-1],
[my_dia/2,0],
[my_dia/2, my_slot
1.5],
[1,1]
]) ;
}
}
cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ;
}
}

ReplyForwardAdd reaction


OpenSCAD mailing list
To unsubscribe send an email to discuss-leave@lists.openscad.org


OpenSCAD mailing list
To unsubscribe send an email to discuss-leave@lists.openscad.org

I agree that printing it upside down seems promising, but as designed, it doesn't have much flat surface on the top to contact the build plate, so it might still come loose. But if you can make that method work, it would be the best. You might be able to make a loosely connected disk in the top hole to provide more build-plate contact and then cut that out. For printing as shown, I don't think removing the necessary supports if you only place them in the middle region would be a major operation, but the surface left would be rough as is generally the case with supports. On Sun, Nov 3, 2024 at 7:25 AM Leonard Martin Struttmann via Discuss < discuss@lists.openscad.org> wrote: > I agree, flip it upside-down and use a raft. > > On Sun, Nov 3, 2024, 06:08 mike.fraser.1945+osc--- via Discuss < > discuss@lists.openscad.org> wrote: > >> The part below is a portion of a larger project being crafted in PLA on a >> FDM system. As such it will not print. It gets to about where the RED dot >> is then the webs start breaking or shifting. I'm looking for >> recommendations for a support structure that will not require extensive >> cleanup. >> Thanks again, Mike >> >> >> >> >> >> // Testing.... >> include <BOSL2/std.scad> >> >> my_dia=50 ; >> my_thick=3 ; >> n_slots = 16 ; >> my_slot=my_dia*PI/(n_slots*2); >> >> // This will not print successfully, so, top_half then print two. Leave >> brim on, glue then separate brim >> top_half() { >> difference() { >> difference() { >> // Body >> difference() { >> sphere(d=my_dia, $fn=180) ; >> sphere(d=my_dia-(2*my_thick)) ; >> } >> // slots >> zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1], >> center=true) { >> polygon ([ >> [0,0], >> [1,-1], >> [my_dia/2,0], >> [my_dia/2, my_slot*1.5], >> [1,1] >> ]) ; >> } >> } >> cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ; >> } >> } >> >> *ReplyForward*Add reaction >> _______________________________________________ >> OpenSCAD mailing list >> To unsubscribe send an email to discuss-leave@lists.openscad.org >> > _______________________________________________ > OpenSCAD mailing list > To unsubscribe send an email to discuss-leave@lists.openscad.org >
K
Ken
Mon, Nov 4, 2024 4:51 AM

Not sure if the information is any use to you Mike, but I took out top_half()  and printed the whole part in pla on my Prusa I3Mk3s+ with no problems.  I can attach a photo of the part if that would be useful.
I did enable brim in the slicer, but that is easily removed.
So perhaps you might need to look at your slicer or printer setup?

On 2024-11-03 23:07, mike.fraser.1945+osc--- via Discuss wrote:

The part below is a portion of a larger project being crafted in PLA on a FDM system.  As such it will not print.  It gets to about where the RED dot is then the webs start breaking or shifting.  I'm looking  for recommendations for a support structure that will not require extensive cleanup.
Thanks again, Mike

// Testing....
include <BOSL2/std.scad>

my_dia=50 ;
my_thick=3 ;
n_slots = 16 ;
my_slot=my_diaPI/(n_slots2);

// This will not print successfully, so, top_half then print two. Leave brim on, glue then separate brim
top_half() {
  difference() {
    difference() {
      // Body
      difference() {
        sphere(d=my_dia, $fn=180) ;
        sphere(d=my_dia-(2my_thick)) ;
      }
      // slots
      zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1], center=true) {
        polygon ([
          [0,0],
          [1,-1],
          [my_dia/2,0],
          [my_dia/2, my_slot
1.5],
          [1,1]
        ]) ;
      }
    }
    cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ;
  }
}

ReplyForwardAdd reaction


OpenSCAD mailing list
To unsubscribe send an email todiscuss-leave@lists.openscad.org

--
Cheers, Ken
bats059@gmail.com
https://vk7krj.com
https://vk7krj.com/running.html

A baby can be defined as an ego with a noise at one end and a smell at the other.
Your job as parents is to teach them to control all three.
My job as a grandad is to tell you how you are doing it all wrong!

Not sure if the information is any use to you Mike, but I took out top_half()  and printed the whole part in pla on my Prusa I3Mk3s+ with no problems.  I can attach a photo of the part if that would be useful. I did enable brim in the slicer, but that is easily removed. So perhaps you might need to look at your slicer or printer setup? On 2024-11-03 23:07, mike.fraser.1945+osc--- via Discuss wrote: > > The part below is a portion of a larger project being crafted in PLA on a FDM system.  As such it will not print.  It gets to about where the RED dot is then the webs start breaking or shifting.  I'm looking  for recommendations for a support structure that will not require extensive cleanup. > Thanks again, Mike > > > > > > // Testing.... > include <BOSL2/std.scad> > > my_dia=50 ; > my_thick=3 ; > n_slots = 16 ; > my_slot=my_dia*PI/(n_slots*2); > > // This will not print successfully, so, top_half then print two. Leave brim on, glue then separate brim > top_half() { >   difference() { >     difference() { >       // Body >       difference() { >         sphere(d=my_dia, $fn=180) ; >         sphere(d=my_dia-(2*my_thick)) ; >       } >       // slots >       zrot_copies(n=n_slots, r=9) linear_extrude(height=60, v=[0,0,1], center=true) { >         polygon ([ >           [0,0], >           [1,-1], >           [my_dia/2,0], >           [my_dia/2, my_slot*1.5], >           [1,1] >         ]) ; >       } >     } >     cylinder(h=my_dia+1, r=my_thick*2, center=true, $fn=90) ; >   } > } > > *ReplyForward*Add reaction > > > _______________________________________________ > OpenSCAD mailing list > To unsubscribe send an email todiscuss-leave@lists.openscad.org -- Cheers, Ken bats059@gmail.com https://vk7krj.com https://vk7krj.com/running.html ---------------------------------------- A baby can be defined as an ego with a noise at one end and a smell at the other. Your job as parents is to teach them to control all three. My job as a grandad is to tell you how you are doing it all wrong!